Integral points in convex polyhedra, combinatorial Riemann-Roch Theorem

and generalized Euler-MacLaurin formula

Jean-Michel KANTOR
Askold KHOVANSKII

The study of polyhedra in R™ with vertices on a given lattice is a very old subject.

It is a part of combinatorial geometry but has strong links to other fields: geometry
of numbers, linear diophantine equations, algebraic geometry, for example,

In recent years, a bridge has been established between this sub ject and the theory of
toric varieties [Kh-D).

For example, take the classical result of L. Ehrart: If A is a polyhedron in R with
vertices in Z", then the number of integral points in PA is a polynomial in p (for any
positive integer p). An elegant proof of these results consists in passing the bridge we just
mentioned and applying Riemann-Roch theorem for toric varieties.

In [D] Danilov asks for formulas connecting volumes of polyhedra and the number of
integral points they contain.

To answer this question - and others! - the method of these notes is to forget the
bridge, and use elementary methods in the study of polyhedra, or rather the space of
linear combinations of characteristic functions of polyhedra. This space, first introduced
in [G], has an interesting structure in itself (duality, convolution) which leads to natural
generalizations of Ehrart’s result as well as others, proved by McMullen, on valuations.

The second key-idea is to use integration of such functions as mentioned, with respect
to the natural measure given by Euler characteristic. This idea has been developed by

O.Viro in [V].

As a result of our study, we obtain a Riemann-Roch theorem in combinatorial geom-

etry (Theorem 1, Chapter IV) which includes (passing the bridge) the classical Riemann-
Roch theorem for toric varieties.

As a second result, we give a multidimensional generalization of the famous Euler-
MacLaurin formula following the first “proof” by Euler.

The results of these notes belong to A. Khovanskii and A. Pukhlikov (some of them
will appear in russian in Algebra and Analysis, 1992)

The first author wrote these notes after A. Khovanskii’s lectures given in June 1991
at University Paris VII.

Paris, March 1992.
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Chapter I. The »

lgebra of polvhedral ¢

We introduce, following an idea of ¢
the set of convex compact polvhedr

Interesting structure of convolution

I. Polyhedral chains; convol

L.1. In the classical theory of convex bod

R™, called in the following simply polyhe

° Vinkowski sum: For 4 and B polyhed

A+
° Support function: For any |
function of A, L is defined by
La(¢

o Valuations on the set of polvhedra.

A function V with values i a group -
is called a wvaluation if 1t satisfies

L—(Al J Az} = KF(_A

whenever A\, Ay und their union
A valued function 1/ 1s Minkowski 4

V(AL 4 Ay)

(o) 0.

Lemma 1. If V is Minkowski addit;

&1

This results from the identity

A]UA’g‘f’L&;ﬂAQ

1f AI) AQ)

e The dual of a valuation V" is the valu

V*(A) =

imear form £ on R™

VA +

hains: Euler integration, convolution, shadows.

roemer [G|. an algebra which contains canonically
2 in B and finite unjop of such sets, and has an
algebra.

ution and duality.

les, one considers compact convex polyhedra ip

dra. and the following operations on them [B-Z].
ra
TYyirT€4d ye B).

and any polyhedron A the support

) =max &/

).
T

- usually the reals -

defined on the set of polyhedra

1)+ M) =1, n AvY

are polvhedra.

dditive if

F(Ay)

for non-empty polvhedra

t is a valuation.

= A + A\,

Ay UA, are non empty convex sets.

ation V*:

PCIARTI
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where the sum is taken over aj] faces T' of A of all dimensions IT].

L.2. The following gencralization is introduced:

Definition 1. A polyhedral chain in R s a linear combination of characteristic functions
of polvhedra.

‘ l ifze
= A Lge L (] == ’
(1) f Z SRYS () {O if not.

We denote by P the vector space of polvhedr

al chains. Any function f of P can be written
In many ways as in (1). The set of polx

vhedra injects canonically in P by

I 10
Proposition 1 and Definition 2. If fisasin (1)

/de:Z,\i

is independent of the representation of fo It is called the Euler integral of f. The Euler
integral gives measure one to all characteristic functions of polyhedra. .

Proof. Suppose

Z/\g Ig, =0

and let us prove by induction that

the K;’s are closed intervals of R: we prove the assertion b

y induction on the number p of
non-empty sets Ii'? N Ix (for 7 and j distinct).

If p is zero the result is clear: all I;'s hav

e disjoint interiors, and it is easy to check
that the A; must all vanish.

If p is strictly positive, let I'; and Iy be such that
KONKS 29
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Figure 1
One has:
Mg+ 2 1y, = 4 SR A T H 00+ M) lp g, — Ay 14 — Az 1p

which shows that Iy, A5 can be replaced by I}, K}, I'; N Ny, A, B, thus lowering p by
one. Whence the proof by induction.

b) Let = be a linear projection from R” to R It s enough to prove that

ZA\{ 1[\—i = 0 = Z/\l‘ 171’(1\—;') = O

Let z be a point in R™~!

w(z) = }: N Logy(z) = Z A\
eJ

where J is the set of indices ¢ such thar

ren(l;))e Y z)nk; # 0

Z/\,' l[\". = () = Z/\,‘ 1;\'1.071,—1(13) - 0

and

Z /\i ll\';ﬂn’(r) = Z/\l 1[\'.’(‘1#"‘(1:) =0= Z )‘i =0
eJ
because 7 71(z) is of dimension one.

This proves that 1 is identically zero and so the sum is zero by induction.

Proposition 2 and Definition 3. If f and g are two polyhedral chains, the function

frg=frgla)= / flz - y) gly) dE(y)

o)



1s a polvhedral chain. called the conwolution of f and g. With this convolution, P is
A commutative algebra with unit (the Dirac mass 9p). and the convol

ution prolongates
Minkowski addition:

lawly = lasar.

Proof. For z fixed

f#=gj= Z Ai i,

and one checks the formula (2); the convolution is well

-defined, and makes P into a com-
mutative algebra.

Remark. (2) is not true if A is not closed.

I.2. Duality.

Proposition 3 and Definition 4. Let f be a polyvhedral chain. For any point z define

f'(I):/de:/leB(ZE
B

where B is a sufficiently small polvhedral open b

ail centered in z. Then [* is a well defined
polvhedral chain, the dual of f. Moreover

(3) | =
If
(4) f=1la fr=(-1)P1.,.

Proof. Take

f=1a
with A polyhedron. Then, for B small open polyhedral ball centered at z,

f*($0)2/1A'1B dE:/(lAﬂ§~1an3) dE
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1s zero if 4 is not in AV Otherwise

frlen) =1 (1= (-1 = (Lpjia

One proves (3) the same Way.

Proposition 4. If A js a polyhedron. 1, is invertible in the algebra P and:

el o e R Y

Proof.
la=1_33)(r) = /L\(u) L_ao(z —u) dE(u).
Be=l
1Ax1_Ao(0):/1A(lz> lao(u) = /1Q0(u) s [
Ifx£0

la*1l_no(z) = /1-_\(11) lrgno(u) Z/lamz+;\.°(u) dE.

This Euler integral. being a topologic
cube. Finally one gets (4).

al invariant. can be computed easily: take for A a

I.3. Radon transformation. e define the R
following ideas of O. Viro [V]. For this purpose.
discussion to the projective case. Rather,
category of semialgebraic sets in RP™.

adon transform in real Projective space,
one needs an easy adaptation of previous
we prefer to change categories, and work in the

-

Definition 5. A function [ on RP™ is constructible if it is a linear combination of char-
acteristic functions of closed semialgebraic sets 4. As in the
polyhedra in R™, one can show that there exists a unique (

the space F of such functions. such that

case of convex compacts
finitely additive) measure on

E(ly) = /1_4 dE  E Euler characteristic.
Furthermore, this measure satisfies a Fubini-type property.

v v
Definition 6. If f is in F. the Radon transform of f is the function fon RP” (set of
hyperplanes of RP") defined by



v
f) = /f(.r) CENEI TS /f -1, dF
¢
¢ hyperplane.

Theorem 5. [V] If n is even

f+f*‘:/f dE.
In all cases

VA
/f f./E:/'f dE.

P

Application. Consider a generic two-dimensional smooth surface 3~ in RP®, and a generic
projection on R? (imbedded in "P?).

Theorem 6. For any z in R? let

o(z) = card (= 7!(z))

b(z) = number of ta

Then

ngent lines to the critical curve passing through z, with orientation.

Proof. Let
flz) = a(x)
/de:E(Z)._

Compute f*(?) = f:ez a(z) = E (77Y(€)), in general. The preimage of a generic line £ is a
union of circles, then

f(g=o.

Only tangent lines count, each with a si

gn corresponding to the topology of-vr_l(e) and to
the coorientation of the discriminant.

I1. Shadows.

We introduce a new tool which will be useful in the study of general valuations.
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Lemma 1. Let

he two half-interval

Proof,

The line

1ntersects

n a half-closed interval.

Let now dj, ..

-, ar be k vectors in R™

I'=la, g
J = QO]

sin R, in opposite direction. Then

ly=1;,=0.

Figure 2

» and denote by a;

g

the half intervals they define:



/ai

Flgame 3

Lemma 2. Suppose a linear relation
Z A =0
with ();) all strictly positive. Then

Ly #1,, .. Loy =10,

This confirms the existence of many zero divisors in P.

Proof. Consider in the general case

f 2 1/11 *® 1{12

Figure 4

It is the characteristic function of the parallelogram built on
cluded. This can also be written, using the diagonal of this par
1t (E, measure on each parallel)

fz/(/f lsa dEa) dE(a) fa :/f |6 dE,.

10

(a1,d3) with two sides ex.
allelogram and parallels to



Repeating the same procedyre for ay

OZ/fa (ZE’Y*Y'a.x:/(fa*Xaa) 4K,

and so on. We get finally that

can be written as a multiple integral of characteri

stic functions of half-intervals parallel to
] s ... + dr_y). Because of Lemma 1.

/‘ i \lllk = O

The remaining cases 10 he considered are those for which for some ;
By = ’\(a_i“:""'_;‘d;)
(—[H-l = —/\\((l‘i“{"ﬁl‘“—;)

In the first case one can reduce to the case of (% — 1)

vectors. and in the second case apply
Lemma 1 to conclude.

Remark. This shows that P has a lot of zero divisors. It would be

Interesting to investigate
further the structure of this convolution algebra.

Definition. If A is a polyhedron. and ¢ 5 direction in R™ we ca]] shadow of A with respect
"0 a. and denote S(A\. ) the part of the boundary of A which is “in the shade when lighten
jrom a’

Precisely:

S{B,a)={ze A . EUERH,IIEA, An{u+ta, L‘ER}:[Il,l']}.

Remark. S(A,a) is homeomorphic to the projection of A “parallel to ¢” in particular

/S(A.a) dE =1,

Lemma 3. S(A,a) is a union of faces of A.

Notice first that S(A, a) is closed. Next, take z in the shadow §

(A,a) and also in the
relative interior of g face § of .\. Consider the affine space g



Lemma 4. Let Ay, As be two polvhedra.

Ji=la, = Lova,

f2=14, - Lstag a
then
f1 ¥ fa =],
Lemma 5. Fubini’s theorem. If
T:R® - g™

is an affine map, and f a polvhedral chain in R

/';nf(:v)dE(a:):/{am {/(

where dE, is the Euler measure on the space 7!
be the characteristic function of a polvhedron.

flz) dEy}dE(y)

y)
(y). The proof is elementary: take fto

Take now f, and f2 as in Lemma 4. From Lemma 5. applied with

i R™ — gl

a linear projection parallel to ¢

fl*fz(I_):// fil2) fole ~ 1) dE, dE(y),
ner~ly)

Consider the first integral to perform: identifying b
measure on R, the restriction of f1 gets identified w
interval [ and f2 with the characteristic functiop 0
Then the convolution is zero because of Lemma 1.

Y1) with R, dE, with the Euler
ith the characteristic function of a half-

I a half-interval J In opposite direction.



Chapter II. Valuations.

The study of valuations is popular: see MH-S] for surveys. The previous results on

convolution of polyhedral chains and shadows allow us to obtaip general results on
A-polynomial valuations for any lattice \ in R™.

Definition 1. A valuation 1s a linear form on P,

Theorem 1. [H2] Valuations on P identify with valuations on the space of polyhedra by

V(A) = V(1,).
The proof is technical.

It would be interesting to consider the semi-algebraic analogue.

Let A be a lattice in R™.

Definition 2. A A-polynomial valuation is a valuation V on P such that if

m(f)z) = flz + a) 7.

Viree f = {7 V)(f)

is a polynomial in a for any a in . Ifthis polynomial is of degree (for any non-zero a)V

1s said to be a A-polynomial valuation of degree k. For example a A-polynomial valuation
of degree (—oo) is called a A-invariant valuation.

Remark. We do not suppose invariance by GLy(n)

. One essentiall_y knows all A-invariant
valuations with this property B-K] ’

Examples.
1) f— [ fdE is a A-invadant valuation (for any A).
2) Let A be a polvhedron, Q a polynomial in R™, then

V(A) = /AQ(I) dz

Va)= Y Q)

ANz
define A-polynomial valuations. '

13



General invariant A-valuations are defined by any additive measure on
Y=\
IL.1. From now on. we consider the ring
P =TPzn

of polvhedral chains where the polvhedra :\; have vertices in Z™ (more generally, in lattice
). Convolution preserves P.

Let Jy be the sct of polyhedral chains in P (or Pz~ with total zero mass
f & J() . v/f (ZE — ()

Lemma 1. J; is a maximal ideal.

Proof. The map

/:73—+R
fro [1aE

fro-fif

If V" is a Z™-invariant valuation (called invariant valuation in the sequence)

satisfles
because of Lemma 3, Chapter II.

Vifo—f)=0 YaeI"

Let J, denote the ideal of polyhedral chains killed by any invariant valuation, Ji the ideal
of polyvhedral chains killed by any Z™-polvnomial invariant translation of degree up to k.

Theorem 2. a) J51+k+1 C Tk
(convolution power for Jy')

In particular,

b) JM ¢ To.

Proof of Theorem. We will prove b). a) is a slight generalization of the argument.

14



Lemma 1. Let fiooo o fari ben+1 chains in J,. Then

,;:fl""‘fn—v-l

can be written as a linear combination of convolutions of tvpe

’Sq*ﬂ

where a is a vertex of some fy.

Proof. 1) If

F=3 Xl /de:O:c»ZAg:o

JF = Z /\i [1[{[. — 60}
But

/(11\] - 60) = 0.

So it is enough to prove the lemma for such polyhedral chains.

2) Let £; be an affine space of minimal

dimension containing A; and v; a vector in L;.
One can choose

Vipsss,Vper 3 € L R®

such that
Z ’\i vy = O
h Take

;:fl*"'xfn—f»l

fi = l[\'l- — 1y = <1[\'.‘ - 15(1\';,51,-)) + <15(K;.a.') - 10)
e S——

¢i and h; have zero total mass (see Remark on the shadow). Then

(%) Q:H(gi{-hi)-

Because of Theorem 1, Chapter [, IIg; = 0. All the other products in (*) contain at least
one function h; whose support is of dimension strictly less than n (support of the fi's).

The same procedure that allows us to pass from ¢ to a linear combination of functions
of type :

15



h = 5,1 = 1,1 - 10
where a is among the vertices of the f,’s: at each step no new vertex was added!

The part b) of Theorem 2) is an easy consequence of Lemma, Assuming a) true for k — 1,
and letting V be a polynomial valuation of degree at most k, then for any integral point F

f—>V((Sb*f—cSo*f):V[((Sb-—ﬁo)*f]

is a polynomial valuation of degree at most (k—1). Applying Lemma 2 and the induction
hypothesis yields part a) of Theorem 2.

Theorem 3. Let V be 3 polynomial valuation.
1) For any A in P and £ eN
V(L) = v(ka)
is a polynomial in ky tv.a(k), called Ehrart polynomial for V.
2) iya(—k) = V*(kA), k positif.
(Duality).
3) In general, for A; polyhedra, 7 a polynomial valuation

khkg,...,k’u ‘**V(:IJ} A] “f—kg Az—lr-""{—]‘ﬁu Aﬂ)

Is a polynomial in (kq, ..., k,) for

k1>0--k, >0

Theorem 3 extends classical results of McDonald and McMullen [MD,MM].


Askold Khovanskii
Typewritten Text
16


For k positive, omitting the sign « for convolution powers.

Ia= (1271, — 1y

k
5= ciny -1y . /(1A—1>dE=0.

Because of Theorem 2, only powers j intervene with

J<n+=p+1.

S0 we can write

n-+p

VA) =) 1V 1 —1p] (CL=0if j > k)

=y

and this is a polynomial in &, denoted by Va(k), of degree at most n + p.

IT.2. Using the expansion of (1 — k)=*% i} positive) we can write
n-+p

175 = Z CLitla = 1) 4 (14 — 1)ntpt o, oeP.
j=0
Because of Theorem 2 we deduce (remember the mverse of 1,')

V(135 = Val=k) = ¥ (1) 1) = V(15 )
= V7(k(1_4))
which proves the assertion.

The third part of Theorem 3 is ag easy extension of the first part.

Example. If ¥ counts the number of points in Z" N A. 17
number of points in 2" N A° T(kA) and TH(kA)

polynomial taken for values & and (=4).

counts - up to a sign - the
are given up to a sign by the same

Historical remarks.

The first author who studied systematically the number of integral points of integral

polyhedra was L. Ehrart [E] who gave a generalization of Pick’s formula. See also Reeve

and McDonald [MD.R].

Then, in 1975‘, D. Bernstein gave a direct proof of the existence of Ehrart’s polynomial

ta(n) = card(nA N z4

for a polyhedra A in R?. His proof uses inductive methods on d and linear projections (B].

¥



The theory of toric varieties allowed a reduction to Riemann-Roch theorem [K-D]. See
[B] for complements and results close to some of the results herein.

Another progress was to replace the Ehrart’s polynomial by another polynomial in-
trinsically defined through the generating function of the previous

(1- w)‘”l EiA(nP):c" =ho+ hyz + -« + hgzt

This new polynomial is more practical, has local interpretation [B], [S], [MMZ2] and seems
rich of further developments.

Still the coefficients of Ehrart’s polynomial keep their mystery (see [K], [M], [R-G], [P]
for the case of a tetrahedron). They are a basis for all unimodular continuous valuations
on the set of L-polyhedra [B-K].

18
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Chapter III. Decomposition of polvhedra into cones and eXponential sums.

We introduce cones in ®” and relate polvhedr

a to cones,
of sums over polyhedral chains.

This allows decomposition

ITI.1. Cones.

All cones we consider will he closed convex cones in R°

- with vertex at any point. As
with polyhedra, we introduce rhe

Definition 1. A conic chain in B™ is 4 linear combination of characteristic functions of
cones. If C'is a cone C denotes the enpe rransiated from (', wirh vertex in ().

Definitions 1°.

A cone with vertex at 0 is degenerate if it contains g fion-zero vector subspace of R™,

= F 9 £
E non-zero vector subspace.

A cone C' with vertex at 1 is degenerate if C is degenerate.

A conic chain is degenerate if it can be re
erate cones.

This induces an equivalence relation on the space of conic chains.

Decomposition of cones.
Let f = oA lc; be a conic chain. al] cones being convex and with vertex at 0.

Let L be a general linear form.

Praoposition 1. There exists a conic chain f; equivalent to 7,

gative on D; outside the origin.

Example. n =1 Liz)=z.If f= (n- take fi = f If f = Xq. take fi = —(Xy- + ).

Proof. It is enough to consider for f the ch

aracteristic function of a cone. Consider the
case n = 2 as an example.

a) If L keeps a constant sign on C\0 the assertion is obvious:

18



f=xc L{iz) <0 e C\0 f, = F
Liz)>0 Yre C\0 f, = Xor
U

f+fi~0,

b) If L does not keep a constant sign

Figure 5

Suppose C = (@) L>00n0y, L <0on0z Take C' = [20z[ (0z excluded),

XC’ = _YC'

In the general case, let C be a simplicial cone (octant over a simplex), and suppose that L

is sufficiently general so that it is not constant on any edge of dimension one of the simplex
(61, § i en)

Suppose L(e;) > 0 on some e; (otherwise take hhark
Replace C' by C" cone over the simplex (e!) where
&, =4 of Lie;) <0
e;=—¢e; if L(e)>0

and take precisely C' to be the cone over the (non-closed) simplex S

It 1s clear that

L{z) <0 VzeC', z #0.

Moreover C' and C' have no other intersection point than 0, and

20



fzxc,,+5o:xc+xc,

and C" contains the whole line z0y.
IT1.2. Application to polyhedra.
Lemma 1. Suppose (C;) are convex cones and I a linear form such that

L(z) <0 zeCf= Ci\{0}.
Then

> X le, ~0= ) "Ailg =0.

Let f be a polyhedral chain, 4 a point of its support. Suppose first f is the characteristic
function of a polyhedron. Then there exists a unique cone Ca,4 with vertex in 4 such
that A and Ca,a have same germs at a. Ca, 4 is the tangent cone of A in a.

If A moves in the relative interior of & given face F of A

Ca,a=Carp
remains constant (up to a translation).

We deduce that for any linear combination f of characteristic functions of polyhedra and
cones, and for any point A, there exists a conic chain 4 such that, as germs in A4

fEﬂ/EZ/\E 1C,'

where C; have vertices in A.

Definition 2. If the C}’s can be choosen such that f is locally equal (in A) to a trivial
chain v, A is said to be a trivial point for f.

A wvertez of f is a non-trivial point.

Examples. 1) If

f=1¢ C cone with vertex in A,

A is the only vertex of [ (eventually, if C non-trivial; hopefully!).
2y H

fe=la . A polyhedron,

the vertices of A are the vertices of f.

21



f = Z Ai L,

the vertices of f are to be found among the vertices of the A;.

Lemma 2. If f is a polyhedral chain. (A;) its vertices, suppose

=3 m=3

with +;, 7/ characteristic functions of cones with vertex A;. Then

1 T !
Y= ,'i“"/i:+§ (vi — i)

1#)

implies that !’ coincides with a trivial conic chain in a neighbourhood of 4 and so every-
where by homogeneity.

The following result will be needed in the decompositions of polvhedral sums.

Theorem 1. (Varchenko) Let f be a polyhedral chain. V the finite set of its vertices, and
L a general linear form.

There exists a family of conic chains {v4; 4 € V} such that ~4 has vertex in A,

f= Z A

Liz) < L(4).

Proof. Take a general linear form L having a supremum at some vertex 4 of V. The germ

of f in A is equal to the germ of a conic chain ~ 4. By Proposition 1 there exists ', conic
chain with vertex in A such that

L(z) < L(4) on all cones of 7/,

Ya ~ Y

Consider

f1=f"’Y:4-

Q)
O]



This new polyhedral chain has no other vertices than those of

fand v/,, and is trivial near
4. So f, has one vertex less th

an f. Furthermore L is hounded above on the support of
fi. By an easy induction argument. the theorem follows, because in the case of a chain f
with no vertex, Lemma 1 impiies that the chain f is zero.

Remark. All constructions anove preserve the lattice structure. In particular if A is a

polvhedron with vertices in i :he ~'sin Theorem 1 can also be chosen as combinations of
characteristic functions of L-cones.

II1.3. Generalized discrete Gauss-Bonnet formula.
We will also need further rhe following result.
Proposition 2. Let

f = ZAI 1/\';

be a polyhedral chain, decomposed in cones as in Theorem 1. Then

/de:Z/\i

and if K are the cones with vertex at 0 translated from the L';’s
d Milp = (/de) §o.
Proof. 1) Take a convex polvhedron B big enough to contain the support of f. Then
JFaE=Y 5 [1inp dE =3 5
- 2) For n =1, it 1s enough by lnearity to prove the assertion for

f=1; I=lab]

then f = 3" A\, 1¢, with cones C; of three types:

Gy == iag,—?—OO[ C :]—oo,aj] Cr=R
Then:

DNEFY =03 4+Y =0

F=3 %1 = (2 0) Yoot + (3 4) ool + (3" n) 1 =4

73



because

lg = Li_c o) + Ljo,4me[ — L.
3) Suppose the result of Proposition 2 true for all polyhedral chains in R™ and for all

m < n.

Intersect the given polyhedral chain f in R" with any hyperplane H

flu=f-1u= > Xlcan
> Ailean (/f |1 dEH) bo.

If f is a polyhedron A, for a given z in 2\ choose an hyperplane H containing =

Z/\,‘ 1[':(1') = Z/\,’ 1[?.-(1}1’(1‘) = </f IH dEH> 50(1?)

Il

Il

This shows the assertion.

111.4. Exponential sums over cones.

1) Theorem 3. (Stanley) Let I be a rational cone with vertex at the origin, ¢ a linear
form such that

f(z)<0 in LK~
Then
Sk(p)= > exp(p,z)
IEI"NKN

defined for p close to ¢, is a meromorphic function of p in all C",

Proof. 1) Take



Ja]

Figure 6

converges for p > 0, and its sum equals

1

Si1p) = 1= exp(—p)’

2) In R™, if

K={)e;,NeR} ¢ 2"

KNI"=17_ ey ={me; €Z, m <0}

1 .
E exp(p,z) = Z if (p,e1) > 0.

e — exp(—pey )

3) Suppose K is simple and integer simple, and

K= {i)\l € AzEO}

i=1
where e; are fixed integral vertices which generate freely a sublattice of Z™.

Let

Q:{Ep‘:’/’iei 0S7‘,‘<1}.

3=1

Then @ contains a certain number of points in 2%}, and any point z in Z7 can be written
in a unique way

r=u-+v u € K
v & QNLL.

Adding the various contributions for each v

(1) Sk(p) = ——— J] (1 - exp(—pe))
. erP’U i=1
YEQ
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which is meromorphic.

In general, K can be decomposed into simple cones, and the sum Sk(p) can be
written as a sum of terms like (1), a meromorphic function in the whole space (by analytic
continuation).

Let Cy be the space of linear combinations of characteristic functions of rational cones
with vertex in 0.

Proposition 4. There is a unique extension of

K — Sk(p)
U)Cm‘

J = S¢(p)

which associates to any f in Cy a meromorphic function S¢(p), such that if f is trivial
S¢(p) is zero.

Proof. To define Sy take a general linear form ¢, and g equivalent to f as in Theorem 1.

Then define

S¢(p) = Sy(p)

as a meromorphic function, holomorphic for p close to £. It does not depend on the choice
of g, because of Lemma 1.

Theorem 5. Let A be an (integral) polyhedron, V its set of vertices

1a=Z”YA

a decomposition of A in rational conic chains with vertices in V, as in Theorem 1, corre-
sponding to a given general linear form ¢. Then

1) Z EXp PE = Z exp pA S;;(p)

TEANZ™ AeVY

where 74 is the conic chain with vertex in 0 obtained by translation from ~4.

2) > S=(p)=1.

AeV

Proof. a) The first part, for p close to ¢, is a consequence of Theorem 1 because 26
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S14(p) = exppA S~ (p).
b) We can apply Proposition 2 (Gauss-Bonnet).

2) Continuous analogues
Proposition 6. Let K be any rational cone in R"

Mg (p) = /exp(p:c)d:c

is convergent for p such that

pz=(p,z) <0 z€K 3 0

This integral defines a rational function of D.

Proof. a)n=1 p>0 K=R_

0 1
j/ exp px dy = —,
p

— O

The formal sum - defined for no p! - should be zero:

+oo 0 1 1
/exppaz dac:/ exppm—}—/ eXppr = — 4+ — = (.
R 0 —00 b p

b) If K is a simplicial cone of dimension n,

I(:{i)\iei; /\,ZO}
1

Consider a linear change of variable A which changes the canonical simplicial cone ® into
K

/ exp(pz)dz = f exp(pAy)| det Aldy = / exp Zpi y; |det 4] dy
K & ¢

_ det(e;,...,e,)
P1-Pn

Pi = <pa 81')
which is a rational function.

c) For a general rational cone, the construction is similar to the one in the discrete case.
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Geometrical interpretation. If V(p) is the volume of the intersection of K with the
half-space

pr > —1

H
(2) V(p) = -—’j/ exp pr dz.
LR 5
In fact if V(p, ) is the (n — 1)-volume of the intersection of K with the hyperplane

Pr=a a<(

one has

V(p, @) = |a|"~! V(p)

and also

/eo‘ la|"™ V(p)da = / exp pz dz.

K

Theorem 7. If A is any polyhedron, V the set of its vertices, 74 the cone with vertex in
0 translated from the tangent cone Ya of Ain A,

1) / exppz dz = Z exppA M 4(p)
- A€y

where

Ma(p) = M—~(p)

2) Z Ma(p) = 0.

Agy

The proof follows the line of the proof of Theorem, using the decomposition of A into conic
chains (Theorem 1) and Gauss-Bonnet.

Remarks. 1) Both Theorems 5 and 7 have an obvious extension to polyhedral chains.
For example

Z exppz f(z) = E exppA f(A) Ma(p). 28

TEL" A€y
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2) For a given cone C the formula
S exppe= Y erppd atp)
zE€ANZ™

1s a universal formula: the measures Sa(p) are defined by the tangent cone of A at A and
the formula needs only, to be applied, a decomposition of each tangent cone into simple
and integer simple cones to get simple formulas for S (p).

For a given fixed

pP= (Pl,- 5% 7pn)
take

Ap = (Ap1,..., Apn).
The left-hand side is a holomorphic function and its value for zero is #(I™" N A).
The right-hand side is a meromorphic function, which has a Laurent series at the origin
DA (P
1210

The A;’s depend on the decomposition of A in cones (on a choice of any privilegied direc-
tion). For different directions p one gets different decompositions. The choice of p allows
the choice of decay-functions corresponding to cut-offs for the integrals associated to the
hyperplane § going to infinity.

Figure 7

Remark. 3) By differentiation with respect to p the formulae extends to a summation
formula for example for



E= 3" Q(c)exppa

zEANTT
Q(z) polynomial.

30
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Chapter IV. Todd operators and generalized Euler-MacLaurin formulae.

Inspired by Euler’s original proof we introduce a non-local infinite order differential
operator, called Todd operator because of its formal relation to the Todd class. This
construction allows the proof of a relation between discrete and continuous valuations,
called “combinatorial Riemann-Roch theorem” (as a particular case one gets Riemann-
Roch theorem for non-singular toric varieties).

We also obtain natural generalizations of the classical asymptotic formula of Euler-
MacLaurin.

I. Operators of infinite order.

I.1. Tt is well known that if U is an open set in C™, and (ay) holomorphic functions in U,

the infinite series
0 a\"“
g (5“) =2 ael®) (zr)

(with usual conventions) defines a local operator, which acts on holomorphic functions in
U and on the sheaf Oy if strict convergence conditions are satisfied [B-K].

In the general case, take for example

P (:{: 5%) =) aa(x) (%)Q where

CZQG O('Z‘ <5)

Suppose for some R in R7,

> laa(z)] B* < 0

then it is easy to see that P acts on the space Eg of exponential-polynoms of the type

p€Er =) exp(p;z) ¢;(z)

finite
{ ¢j(z) € R[z]
lp;| < R
Moreover:
(1) P <x, 5%) [exp pz] = P(z,p)exp(pz).
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Basic example. The Todd operator in n variables is the non-local infinite order differ-
ential operator associated with the function

n

H(@:E 1“—_“63?(_—5)

that is, take the convergent series associated with each term of the product, and replace
s by -2,
¢ ox;

II. Framed polyhedra.

Definition 1. A framed polyhedron in R™ is the set of following data:
a) A simple polyhedron A: at each vertex of A, A is the intersection of n half-spaces.
b) For each face F of A, a dual element ¢; in R™*.
¢) A volume form w,,.

Basic example. Take any lattice L in R™, A a simple polyhedron with vertices in L.

Then associated to it is a canonical framed polyhedron choose for any face F; of A the

unique ¢; defined by

L; LF;

£; <d;on A,

A={z; li(z)<di;i=1,...,5)
£; e L*,

with smallest length (with respect to L) for these properties.
Take for w, the volume associated to L.

To such a framed polyhedron, we associate a family of polyhedra in R™, depending on

parameters (A); these polyhedra have no more vertices; they are obtained by moving the
faces F; parallel to themselves:

Ah:{x;fi(x)§d5+hi izl,...,j}
h:(hl,,h])
D= A

Theorem 1. Combinatorial Riemann-Roch theorem. Suppose A is simple and
integral simple, and let

ghy= | Q(z)dx 32
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where @) is a given function in R”.

Let T(3/0h) be the Todd operator in the J variables h. Then, for Q polynomial,

TO/ORg(M)] lhco = > Q(a).

TEANT™

This formula is also true for @ in Eg (for small R).
We assume A as in hypothesis.

Lemma 1. The combinatorial structure of Ap 1s independent of h for small k and

g(hap):A exp(pz)dz.

From the hypothesis we deduce that each vertex 4 of A is defined by the intersection of n
hyperplanes

indexed by a subset I(A4) of {1,...,5}.

For h close to zero the n corresponding equations

(1) @z(CL') = di + hz‘
define the vertex A(h) of Ay. In the same way any face of codimension g of A(h) is defined

by ¢ equations as (1). This shows that the combinatorial structure does not change for h
close to zero.

Proof of Theorem 1. From Theorem 7 we know:

(2) exppz dr = exp(pA) Ma(p)
/[A pp Z; PP AP

where V is the set of vertices of A, the equality being between meromorphic functions.

Now (2) is still true for Ay !

(3) i[ exp pz dz = z exp(pA) My, (p)
Jan AEV(A4)

where V(A}) denotes the set of vertices of Ay,
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If Ay has rational vertices (in ZL), take mA, and apply (3). Because (3) is smooth in h,
this extends to any A.

Given a vertex Ay, of Ap, because of Lemma 1 A, can be defined by n hyperplanes,

A being simple and integral simple these hyperplanes can be taken as hyperplanes of
coordinates:

b=z =d; +hy 1= 1,...,n.
Then the contribution of A to the second term of (3) is

Ca, = exp (sz fi) X Hlpj
p; = {p, 6]')
A = ()

= 1
Ca, = exp (Z pi(d; + hi)> P,
=1 H Pi

=1

Applying the Todd operator to this function of h we get

H p; 1 i
T(R)[Ca,] = -exp )} pi(di + k)
[T exp(-p;) e 4

T(h)[C4,] = expp A(h) x S~ (p).

Finally, summing over all vertices of A r, and letting h equal zero:

T(PICa) lheo = > Jexpp A Sy ()= > exp(pa)
zEANZ"
which is valid for p small, because of Theorem 5, Chapter III.

This proves Theorem 1 for

Q(z) = exp(pz)

p small.

If now R(8/0p) is any differential operator with constant coefficients

R(9/0p) exp(pz) = R(z) exp(pz)
R(o/ov) | T(0/on) [ =T0) [ R@)e(pe)as ..

(4) = Z R(z)exp(pz).

TEANT™

h=0

exp(p) e |
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When p goes to zero the equality (4) becomes

T(8/8h) Jli R(z)de |,.,= > R(z).

zEANI™

This proves Theorem 1. In particular one gets a new formula for the number of points of

" N A:
Corollary. For A as above

T(0/0h)[Vol(An)] |,y = card(ANZ™).

Application. Euler-MacLaurin formula.

In the one dimensional case the theorem gives an asymptotic formula of Euler-MacLaurin,
in case of annihilation of the remainder term.

For various choices of Q(z) Theorem 1 can be considered as a systematic generalization
of Euler-MacLaurin formula in higher dimensions.

We hope to return to these questions soon.
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